About the octuplet of symmetry-distinguishable direction indicators

Jiri Hlinka
Department of Dielectrics, Institute of Physics, Czech Academy of Scinces, Prague, Czech Republic

Physical quantities defined by a magnitude and an oriented axis in 3D space are often represented by three-component Euclidean vectors. Frequently, polar and axial (or pseudo-) vectors are distinguished, depending on whether they change their sense or not, respectively, upon the operation of spatial inversion (parity operation).[1-4] For classification of temporal processes or magnetic phenomena of vectorial nature, the action of the time-inversion operator (1^{\prime}) can be used.

Figure 1 Pictograms providing intuitive definition of the octuplet of the symmetry-distinct vector-like quantities: vectors and bidirectors.

For example, magnetization M and magnetic field vector H are "time-odd axial" vectors electric polarization P or electric field E are "time-even polar" vectors, while other quantities like velocity v or toroidal moment T are "time-odd polar" vectors.[1-6] The two inversion operations generate an Abelian (commutative) group of 4 elements with 4 one-dimensional irreducible representations; the symmetry operations this group allow to classify these vectors into 4 categories (see Table I).[1-4]

1	$\overline{1}$	1^{\prime}	$\overline{1}^{\prime}$	vectorial quantity	symbol
1	1	1	1	electric toroidal moment	\mathbf{G}
1	-1	1	-1	electric dipole moment	\mathbf{P}
1	1	-1	-1	magnetic dipole moment	\mathbf{M}
1	-1	-1	1	(magnetic) toroidal moment	\mathbf{T}

TABLE I: Action of space ($\overline{1}$) and time (1^{\prime}) inversion operations on selected examples of vectorial quantities: 1 stands for the invariance, -1 stands for the sign-reversal. [3, 9, 12]

The aim of this contribution is to emphasize that there are another four types of quantities, which are also defined by a magnitude, an axis and a geometrical sign, and which are also often associated with threecomponent Euclidean vectors, but which possess a different spatiotemporal symmetry than the examples given in Table I): two kinds of chiral "bidirectors" C and F (associated with the so-called true and false chirality, resp.) and still another two "bidirectors" N and L , achiral ones, transforming as the nematic liquid crystal order parameter and as the antiferromagnetic order parameter of the hematite crystal α $\mathrm{Fe}_{2} \mathrm{O}_{3}$, respectively. List of all kinds of the symmetry-distinct "vectorlike" quantities is given below and also illustrated in Fig. 1. Application of this classification to several selected issues discussed or cited in [7-13] will be given for illustration of the concept and the notation proposal.

		$\overline{1}$	1^{\prime}	$m_{\\|}$	limiting group
\mathbf{G}	time-even axial	1	1	-1	$\infty / m . \mathbf{1}^{\prime}$
\mathbf{P}	time-even polar	-1	1	1	$\infty m \cdot \mathbf{1}^{\prime}$
\mathbf{M}	time-odd axial	1	-1	-1	$\infty / m m^{\prime}$
\mathbf{T}	time-odd polar	-1	-1	1	$\infty / m^{\prime} m^{\prime}$
\mathbf{N}	time-even neutral	1	1	1	$\infty / m m \cdot \mathbf{1}^{\prime}$
\mathbf{C}	time-even chiral	-1	1	-1	$\infty 2 . \mathbf{1}^{\prime}$
\mathbf{L}	time-odd neutral	1	-1	1	$\infty / m m^{\prime}$
\mathbf{F}	time-odd chiral	-1	-1	-1	$\infty / m^{\prime} m^{\prime}$

Acknowledgements It is a real pleasure to acknowledge Václav Janovec for his valuable suggestions related to this work, financially supported by the Czech Science Foundation (Project 13-15110S).

References

[1] F. Author, S. Author and T. Author, J. Sig. Res. Vol, Page, (Year).
[1] R. R. Birss, Symmetry and Magnetism (North-Holland, Amsterdam, 1964).
[2] H. Grimmer, Ferroelectrics 161, 181 (1994).
[3] E. Ascher, Int. J. Magnetism 5, 287 (1974).
[4] V. Kopsky, Z. Krystallogr. 221, 51 (2006).
[5] Yu. Sirotin and M. P. Shaskolskaya, Osnovy Kristallophiziki (In Russian, Moscow: Nauka, 1975);
[Engl. transl: Fundamentals of Crystal Physics (Moscow: Mir. 1982)].
[6] V. M. Dubovik and V. V. Tugushev, Physics Reports 187, 145 (1990).
[7] V. K. Wadhawan, Introduction to Ferroic Materials (Gordon and Breach, New York, 2000).
[8] A.S. Borovik-Romanov and H. Grimmer, in International Tables for Crystallography, edited by A.
Authier (Kluwer Academic, Dordrecht, 2003), Vol. D, p. 137.
[9] D. B. Litvin, Acta Cryst. A64, 316 (2007).
[10] I. S. Zheludev, Fizika kristallov i simmetria (Nauka, Moscow, 1987).
[11] I. S. Zheludev, Acta Cryst. A42, 122 (1986).
[12] V. M. Dubovik, S. S. Krotov, and V. V. Tugushev, Kristallograya 32, 540 (1987).
[13] J.Hlinka, Phys.Rev.Lett. 113 (2014).

